English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dust-air pollution dynamics over the eastern Mediterranean

Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., et al. (2015). Dust-air pollution dynamics over the eastern Mediterranean. Atmospheric Chemistry and Physics, 15(16), 9173-9189. doi:10.5194/acp-15-9173-2015.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Abdelkader, M.1, Author
Metzger, S.2, Author           
Mamouri, R. E.1, Author
Astitha, M.1, Author
Barrie, L.1, Author
Levin, Z.1, Author
Lelieveld, J.2, Author           
Affiliations:
1external, ou_persistent22              
2Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              

Content

show
hide
Free keywords: -
 Abstract: Interactions of desert dust and air pollution over the eastern Mediterranean (EM) have been studied, focusing on two distinct dust transport events on 22 and 28 September 2011. The atmospheric chemistry-climate model EMAC has been used at about 50 km grid spacing, applying an on-line dust emission scheme and calcium as a proxy for dust reactivity. EMAC includes a detailed tropospheric chemistry mechanism, aerosol microphysics and thermodynamics schemes to describe dust "aging". The model is evaluated using ground-based observations for aerosol concentrations and aerosol optical depth (AOD) as well as satellite observations. Simulation results and back trajectory analysis show that the development of synoptic disturbances over the EM can enhance dust transport from the Sahara and Arabian deserts in frontal systems that also carry air pollution to the EM. The frontal systems are associated with precipitation that controls the dust removal. Our results show the importance of chemical aging of dust, which increases particle size, dust deposition and scavenging efficiency during transport, overall reducing the lifetime relative to non-aged dust particles. The relatively long travel periods of Saharan dust result in more sustained aging compared to Arabian dust. Sensitivity simulations indicate 3 times more dust deposition of aged relative to pristine dust, which significantly decreases the dust lifetime and loading.

Details

show
hide
Language(s):
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000360646500006
DOI: 10.5194/acp-15-9173-2015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 15 (16) Sequence Number: - Start / End Page: 9173 - 9189 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016