Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Functional connectivity of visual cortex in the blind follows retinotopic organization principles

Striem-Amit, E., Ovadia-Caro, S., Caramazza, A., Margulies, D. S., Villringer, A., & Amedi, A. (2015). Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain, 138(6), 1679-1695. doi:10.1093/brain/awv083.

Item is


show Files
hide Files
striem-amit_2015.pdf (Publisher version), 4MB
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
Copyright Info:




Striem-Amit, Ella1, 2, Author
Ovadia-Caro, Smadar3, 4, Author              
Caramazza, Alfonso2, 5, Author
Margulies, Daniel S.3, 6, Author              
Villringer, Arno3, 4, Author              
Amedi, Amir1, 7, 8, 9, Author
1Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel, ou_persistent22              
2Department of Psychology, Harvard University, Cambridge, MA, USA, ou_persistent22              
3Berlin School of Mind and Brain, Humboldt University Berlin, Germany, ou_persistent22              
4Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, Leipzig, DE, ou_634549              
5Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy, ou_persistent22              
6Max Planck Research Group Neuroanatomy and Connectivity, MPI for Human Cognitive and Brain Sciences, Max Planck Society, Leipzig, DE, ou_1356546              
7Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Israel, ou_persistent22              
8Department of Cognitive Science, The Hebrew University of Jerusalem, Israel, ou_persistent22              
9Institut de la Vision, Université Paris-Sorbonne, France, ou_persistent22              


Free keywords: Blindness; Development; Plasticity; Vision
 Abstract: Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind.


Language(s): eng - English
 Dates: 2014-09-182015-02-012015-04-132015-06-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1093/brain/awv083
PMID: 25869851
PMC: PMC4614142
Other: Epub 2015
 Degree: -



Legal Case


Project information


Source 1

Title: Brain
  Other : Brain
Source Genre: Journal
Publ. Info: London : Macmillan
Pages: - Volume / Issue: 138 (6) Sequence Number: - Start / End Page: 1679 - 1695 Identifier: ISSN: 0006-8950
CoNE: https://pure.mpg.de/cone/journals/resource/954925385135