hide
Free keywords:
Computer Science, Computer Vision and Pattern Recognition, cs.CV,Computer Science, Human-Computer Interaction, cs.HC
Abstract:
An increasing number of works explore collaborative human-computer systems in
which human gaze is used to enhance computer vision systems. For object
detection these efforts were so far restricted to late integration approaches
that have inherent limitations, such as increased precision without increase in
recall. We propose an early integration approach in a deformable part model,
which constitutes a joint formulation over gaze and visual data. We show that
our GazeDPM method improves over the state-of-the-art DPM baseline by 4% and a
recent method for gaze-supported object detection by 3% on the public POET
dataset. Our approach additionally provides introspection of the learnt models,
can reveal salient image structures, and allows us to investigate the interplay
between gaze attracting and repelling areas, the importance of view-specific
models, as well as viewers' personal biases in gaze patterns. We finally study
important practical aspects of our approach, such as the impact of using
saliency maps instead of real fixations, the impact of the number of fixations,
as well as robustness to gaze estimation error.