English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations

Benner, P., Khoromskaia, V., & Khoromskij, B. N. (2016). A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations. Molecular Physics, 114(7-8), 1148-1161. doi:10.1080/00268976.2016.1149241.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-7F46-D Version Permalink: http://hdl.handle.net/21.11116/0000-0002-8159-8
Genre: Journal Article

Files

show Files
hide Files
:
1505.02696.pdf (Preprint), 299KB
Name:
1505.02696.pdf
Description:
File downloaded from arXiv at 2016-02-08 10:26
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Benner, Peter1, Author              
Khoromskaia, Venera1, 2, Author              
Khoromskij, Boris N.2, Author
Affiliations:
1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738141              
2Max Planck Institute for Mathematics in the Sciences, Leipzig, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The Bethe-Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in molecules and solids on the basis of accurate calculation of the excited states from first principles. This challenging task includes calculation of the BSE operator in terms of two-electron integrals tensor represented in molecular orbital basis, and introduces a complicated algebraic task of solving the arising large matrix eigenvalue problem. The direct diagonalization of the BSE matrix is practically intractable due to $O(N^6)$ complexity scaling in the size of the atomic orbitals basis set, $N$. In this paper, we present a new approach to the computation of Bethe-Salpeter excitation energies which can lead to relaxation of the numerical costs up to $O(N^3)$. The idea is twofold: first, the diagonal plus low-rank tensor approximations to the fully populated blocks in the BSE matrix is constructed, enabling easier partial eigenvalue solver for a large auxiliary system relying only on matrix-vector multiplications with rank-structured matrices. And second, a small subset of eigenfunctions from the auxiliary eigenvalue problem is selected to build the Galerkin projection of the exact BSE system onto the reduced basis set. We present numerical tests on BSE calculations for a number of molecules confirming the $\varepsilon$-rank bounds for the blocks of BSE matrix. The numerics indicates that the reduced BSE eigenvalue problem with small matrices enables calculation of the lowest part of the excitation spectrum with sufficient accuracy.

Details

show
hide
Language(s):
 Dates: 2016
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1080/00268976.2016.1149241
arXiv: 1505.02696
URI: http://arxiv.org/abs/1505.02696
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Molecular Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 114 (7-8) Sequence Number: - Start / End Page: 1148 - 1161 Identifier: -