English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Entropy-driven enhanced self-diffusion in confined reentrant supernematics

Mazza, M. G., Greschek, M., Valiullin, R., Kärger, J., & Schoen, M. (2010). Entropy-driven enhanced self-diffusion in confined reentrant supernematics. Physical Review Letters, 105(22): 227802. doi:10.1103/PhysRevLett.105.227802.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-B453-D Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-B454-B
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mazza, Marco G.1, Author              
Greschek, Manuel, Author
Valiullin, Rustem, Author
Kärger, Jörg, Author
Schoen, Martin, Author
Affiliations:
1Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063308              

Content

show
hide
Free keywords: -
 Abstract: We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S≃1. Along the nematic director these “supernematic” phases exhibit a remarkably high self-diffusivity, which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.

Details

show
hide
Language(s): eng - English
 Dates: 2010-11-242010
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1103/PhysRevLett.105.227802
BibTex Citekey: mazza_entropy-driven_2010
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: 4 Volume / Issue: 105 (22) Sequence Number: 227802 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: /journals/resource/954925433406_1