English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Graphitic carbon nitride “reloaded” : emerging applications beyond (photo)catalysis

Liu, J., Wang, H., & Antonietti, M. (2016). Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chemical Society Reviews, 45(8), 2308-2326. doi:10.1039/C5CS00767D.

Item is

Files

show Files
hide Files
:
2249535.pdf (Publisher version), 6MB
Name:
2249535.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Liu, Jian1, Author
Wang, Hongqiang, Author
Antonietti, Markus2, Author           
Affiliations:
1Dariya Dontsova, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, Potsdam-Golm Science Park, Am Mühlenberg 1 OT Golm, 14476 Potsdam, DE, ou_1933288              
2Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              

Content

show
hide
Free keywords: Open Access
 Abstract: Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro)chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices. Finally, we attempt an outlook on possible further developments in g-C3N4 based research.

Details

show
hide
Language(s):
 Dates: 2016-02-112016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/C5CS00767D
BibTex Citekey: C5CS00767D
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemical Society Reviews
  Other : Chem. Soc. Rev.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Royal Society of Chemistry
Pages: - Volume / Issue: 45 (8) Sequence Number: - Start / End Page: 2308 - 2326 Identifier: ISSN: 0306-0012