English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization

Kirsch, R., Heckel, D. G., & Pauchet, Y. (2016). How the rice weevil breaks down the pectin network: Enzymatic synergism and sub-functionalization. Insect Biochemistry and Molecular Biology, 71, 72-82. doi:10.1016/j.ibmb.2016.02.007.

Item is

Files

show Files
hide Files
:
HEC324.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
HEC324.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
HEC324s1.pdf (Supplementary material), 2MB
 
File Permalink:
-
Name:
HEC324s1.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kirsch, Roy1, Author           
Heckel, David G.1, Author           
Pauchet, Yannick1, Author           
Affiliations:
1Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society, ou_421895              

Content

show
hide
Free keywords: -
 Abstract: Pectin is the most complex polysaccharide in nature and highly abundant in plant cell walls and middle lamellae, where it functions in plant growth and development. Phytopathogens utilize plant pectin as an energy source through enzyme-mediated degradation. These pectolytic enzymes include polygalacturonases (PGs) of the GH28 family and pectin methylesterases (PMEs) of the CE8 family. Recently, PGs were also identified in herbivorous insects of the distantly related plant bug, stick insect and Phytophaga beetle lineages. Unlike all other insects, weevils possess PMEs in addition to PGs. To investigate pectin digestion in insects and the role of PMEs in weevils, all PME and PG family members of the rice weevil Sitophilus oryzae were heterologously expressed and functionally characterized. Enzymatically active and inactive PG and PME family members were identified. The loss of activity can be explained by a lack of substrate binding correlating with substitutions of functionally important amino acid residues. We found subfunctionalization in both enzyme families, supported by expression pattern and substrate specificities as well as evidence for synergistic pectin breakdown. Our data suggest that the rice weevil might be able to use pectin as an energy source, and illustrates the potential of both PG and PME enzyme families to functionally diversify after horizontal gene transfer.

Details

show
hide
Language(s):
 Dates: 2016-02-142016-02-172016-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: HEC324
DOI: 10.1016/j.ibmb.2016.02.007
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Insect Biochemistry and Molecular Biology
  Other : Insect Biochem. Mol. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford [England] : Pergamon
Pages: - Volume / Issue: 71 Sequence Number: - Start / End Page: 72 - 82 Identifier: ISSN: 0965-1748
CoNE: https://pure.mpg.de/cone/journals/resource/954925581163