Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hyperbranched potassium lanthanum titanate perovskite photocatalysts for hydrogen generation

Grewe, T., Yang, T., Tüysüz, H., & Chan, C. K. (2016). Hyperbranched potassium lanthanum titanate perovskite photocatalysts for hydrogen generation. Journal of Materials Chemistry A, 4(8), 2837-2841. doi:10.1039/C5TA07424J.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Grewe, Tobias1, Autor           
Yang, Ting2, Autor
Tüysüz, Harun3, Autor           
Chan, Candace K.2, Autor
Affiliations:
1Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445589              
2Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, USA , ou_persistent22              
3Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Semiconductors with hierarchical nanostructured morphologies may be promising as high surface area photocatalysts for producing hydrogen from water. However, there are few scalable synthesis methods that can achieve such morphologies in metal oxide semiconductors such as titanates. Here, hydrothermal methods were used to synthesize nanostructured potassium lanthanum titanate (KLTO) perovskite without using templates or structure-directing agents. The obtained materials were octahedral particles composed of orthogonal hyperbranched nanowires, a morphology that is usually obtained using catalyst-mediated vapor phase methods. Several fundamental materials properties of KLTO were determined for the first time, including the bandgap (3.3 eV), semiconductor type (n-type), flat band potential, and conduction band maximum (−0.265 V and −0.835 V vs. NHE, respectively). The KLTO hyperbranched structures were also investigated as UV-photocatalysts for H2 production and displayed higher activities than P25 TiO2 and KLTO nanoparticles. The H2 production rate for KLTO decorated with 1 wt% Pt using thermal decomposition of K2PtCl4 reached ca. 2.5 mmol h−1 and was stable for 20 h of irradiation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-12-052016-02-18
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1039/C5TA07424J
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Materials Chemistry A
  Kurztitel : J. Mater. Chem. A
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, UK : Royal Society of Chemistry
Seiten: - Band / Heft: 4 (8) Artikelnummer: - Start- / Endseite: 2837 - 2841 Identifikator: ISSN: 2050-7488
CoNE: https://pure.mpg.de/cone/journals/resource/2050-7488