Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain

Rash, J. E., Kamasawa, N., Vanderpool, K. G., Yasumura, T., O'Brien, J., Nannapaneni, S., et al. (2015). Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience, 285, 166-193. doi:10.1016/j.neuroscience.2014.10.057.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Rash, J. E., Autor
Kamasawa, N.1, Autor
Vanderpool, K. G., Autor
Yasumura, T., Autor
O'Brien, J., Autor
Nannapaneni, S., Autor
Pereda, A. E., Autor
Nagy, J. I., Autor
Affiliations:
1Max Planck Florida Institute for Neuroscience, Max Planck Society, One Max Planck Way, Jupiter FL 33458, USA, ou_1950288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Animals Axons Brain connexin34.7 connexin35 Dendrites Fish Proteins freeze-fracture replica immunogold labeling (FRIL) Gap Junctions Glutamic Acid Goldfish immunofluorescence microscopy Immunohistochemistry Microscopy, Confocal Microscopy, Electron Synapses
 Zusammenfassung: Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at "large myelinated club ending (LMCE)" synapses on Mauthner cells (M-cells) of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical "pre-potentials" immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified "mixed" (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with connexin35 (Cx35) restricted to axon terminal hemiplaques and connexin34.7 (Cx34.7) restricted to apposing M-cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of connexin36 (Cx36) on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-01-29
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.neuroscience.2014.10.057
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Neuroscience
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 285 Artikelnummer: - Start- / Endseite: 166 - 193 Identifikator: -