ausblenden:
Schlagwörter:
Computer Science, Robotics, cs.RO,Computer Science, Computer Vision and Pattern Recognition, cs.CV
Zusammenfassung:
Numerous groups have applied a variety of deep learning techniques to
computer vision problems in highway perception scenarios. In this paper, we
presented a number of empirical evaluations of recent deep learning advances.
Computer vision, combined with deep learning, has the potential to bring about
a relatively inexpensive, robust solution to autonomous driving. To prepare
deep learning for industry uptake and practical applications, neural networks
will require large data sets that represent all possible driving environments
and scenarios. We collect a large data set of highway data and apply deep
learning and computer vision algorithms to problems such as car and lane
detection. We show how existing convolutional neural networks (CNNs) can be
used to perform lane and vehicle detection while running at frame rates
required for a real-time system. Our results lend credence to the hypothesis
that deep learning holds promise for autonomous driving.