Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  An Empirical Evaluation of Deep Learning on Highway Driving

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., et al. (2015). An Empirical Evaluation of Deep Learning on Highway Driving. Retrieved from http://arxiv.org/abs/1504.01716.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1504.01716.pdf (Preprint), 4MB
Name:
arXiv:1504.01716.pdf
Beschreibung:
File downloaded from arXiv at 2016-03-14 13:29
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Huval, Brody1, Autor
Wang, Tao1, Autor
Tandon, Sameep1, Autor
Kiske, Jeff1, Autor
Song, Will1, Autor
Pazhayampallil, Joel1, Autor
Andriluka, Mykhaylo1, Autor           
Rajpurkar, Pranav1, Autor
Migimatsu, Toki1, Autor
Cheng-Yue, Royce1, Autor
Mujica, Fernando1, Autor
Coates, Adam1, Autor
Ng, Andrew Y.1, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Robotics, cs.RO,Computer Science, Computer Vision and Pattern Recognition, cs.CV
 Zusammenfassung: Numerous groups have applied a variety of deep learning techniques to
computer vision problems in highway perception scenarios. In this paper, we
presented a number of empirical evaluations of recent deep learning advances.
Computer vision, combined with deep learning, has the potential to bring about
a relatively inexpensive, robust solution to autonomous driving. To prepare
deep learning for industry uptake and practical applications, neural networks
will require large data sets that represent all possible driving environments
and scenarios. We collect a large data set of highway data and apply deep
learning and computer vision algorithms to problems such as car and lane
detection. We show how existing convolutional neural networks (CNNs) can be
used to perform lane and vehicle detection while running at frame rates
required for a real-time system. Our results lend credence to the hypothesis
that deep learning holds promise for autonomous driving.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-04-072015-04-162015
 Publikationsstatus: Online veröffentlicht
 Seiten: 7 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1504.01716
URI: http://arxiv.org/abs/1504.01716
BibTex Citekey: Huval_arXiv1504.01716
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: