English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease

Khatami, M., Schmidt-Wilcke, T., Sundgren, P., Abbasloo, A., Schölkopf, B., & Schultz, T. (2015). BundleMAP: Anatomically Localized Features from dMRI for Detection of Disease. In L. Zhou, L. Wang, Q. Wang, & Y. Shi (Eds.), Proceedings Machine Learning in Medical Imaging (pp. 52-60). Cham: Springer. doi:10.1007/978-3-319-24888-2_7.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Khatami, M.1, Author
Schmidt-Wilcke, T.1, Author
Sundgren, P.C.1, Author
Abbasloo, A.1, Author
Schölkopf, B.2, Author           
Schultz, T.2, Author           
Affiliations:
1External Organizations, ou_persistent22              
2Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, DE, ou_1497647              

Content

show
hide
Free keywords: Abt. Schölkopf
 Abstract: -

Details

show
hide
Language(s):
 Dates: 2015-10
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Khatamietal15
DOI: 10.1007/978-3-319-24888-2_7
 Degree: -

Event

show
hide
Title: 6th International Workshop on Machine Learning in Medical Imaging (MLMI 2015)
Place of Event: München, Germany
Start-/End Date: 2015-10-05 - 2015-10-09

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings Machine Learning in Medical Imaging
Source Genre: Proceedings
 Creator(s):
Zhou, Luping1, Editor
Wang, Li1, Editor
Wang, Qian1, Editor
Shi, Yinghuan1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: Cham : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 52 - 60 Identifier: ISBN: 978-3-319-24888-2
ISBN: 978-3-319-24887-5

Source 2

show
hide
Title: Lecture Notes in Computer Science
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: Cham : Springer
Pages: - Volume / Issue: 9352 Sequence Number: - Start / End Page: - Identifier: ISSN: 0302-9743