English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Implementing a search for gravitational waves from binary black holes with nonprecessing spin

Capano, C., Harry, I., Privitera, S., & Buonanno, A. (2016). Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Physical Review D, 93: 124007. doi:10.1103/PhysRevD.93.124007.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002A-1834-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-17EB-D
Genre: Journal Article
Other : Implementing a search for gravitational waves from non-precessing, spinning binary black holes

Files

show Files
hide Files
:
1602.03509.pdf (Preprint), 6MB
Name:
1602.03509.pdf
Description:
File downloaded from arXiv at 2016-03-30 11:08
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRD93.124007.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
PRD93.124007.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam-Golm; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Capano, Collin1, Author              
Harry, Ian2, Author              
Privitera, Stephen2, Author              
Buonanno, Alessandra2, Author              
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              
2Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\chi_{1,2}\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\in [2, 48]\,\mathrm{M}_\odot$, and total mass $M_\mathrm{total} \leq 50\,\mathrm{M}_\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\%$ of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early advanced LIGO noise curve. We use simulated advanced LIGO noise to compare the sensitivity of this bank to a non-spinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes, and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of $1.3$ -- $5$ more sensitive than a non-spinning bank to BBHs with dimensionless spins $> +0.6$ and component masses $\gtrsim 20\,\mathrm{M}_\odot$, and even larger gains for systems with equally high spins but smaller component masses.

Details

show
hide
Language(s):
 Dates: 2016-02-1020162016
 Publication Status: Published in print
 Pages: 16 pages, 8 figures
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1602.03509
URI: http://arxiv.org/abs/1602.03509
DOI: 10.1103/PhysRevD.93.124007
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 93 Sequence Number: 124007 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: /journals/resource/111088197762258