hide
Free keywords:
Groundwater Long-term monitoring Simulation Soil hydrology Spatio-temporal variability Urban soils
Abstract:
Purpose
Urban soils’ variability in the vertical direction presumably affects hydrological parameters at the timescale. Moreover, horizontal soil alterations at small spatial scales are common in urban areas. This spatio-temporal variability and heterogeneity of soil moisture and the possible influencing factors were to be described and quantified, using data of a soil monitoring network in the city of Hamburg, Germany.
Materials and methods
Soil moisture data from ten observation sites within the project HUSCO was evaluated for two different years. The sites were located within districts with different mean groundwater table depths and characteristic urban soil properties. Soil hydrological simulations with SWAP were calculated for a selected site.
Results and discussion
The temporal evolution of soil water content and tension for the sites was very distinct, related to soil substrate, organic matter content, and groundwater table depth. Impacts of different vegetation rooting depths, the soil substrates’ type, and to some extent the degree of disturbance on soil water dynamics could be identified. An impact of groundwater table depth on the water content of the topsoil during low-precipitation periods could be assumed. The comparison of the results of soil hydrological simulations with empirical data indicated an overestimation of infiltration and percolation for the given soil substrates.
Conclusions
While soil properties are mainly determinant for the long-term progression of soil hydrology, local site factors affect the short-term regime. A shallow groundwater table contributes to more constant water dynamics while the relative decrease of water during a dry phase is diminished.