English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  ZnPd/ZnO Aerogels as Potential Catalytic Materials

Ziegler, C., Klosz, S., Borchardt, L., Oschatz, M., Kaskel, S., Friedrich, M., et al. (2016). ZnPd/ZnO Aerogels as Potential Catalytic Materials. Advanced Functional Materials, 26(7), 1014-1020. doi:10.1002/adfm.201503000.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ziegler, Christoph1, Author
Klosz, Stefan1, Author
Borchardt, Lars1, Author
Oschatz, Martin1, Author
Kaskel, Stefan1, Author
Friedrich, Matthias2, Author           
Kriegel, René2, Author           
Keilhauer, Toni2, Author           
Armbrüster, Marc3, Author           
Eychmüller, Alexander1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863405              
3Marc Armbrüster, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863414              

Content

show
hide
Free keywords: -
 Abstract: Many different aerogel materials are known to be accessible via the controlled destabilization of the respective nanoparticle suspensions. Especially for applications in heterogeneous catalysis such materials with high specific surface areas are highly desirable. Here, a facile method to obtain a mixed ZnPd/ZnO aerogel via a reductive treatment of a preformed Pd/ZnO aerogel is presented. Different morphologies of the Pd/ZnO aerogels could be achieved by controlling the destabilization of the ZnO sol. All aerogels show a high CO2 selectivity of up to 96% and a very good activity in methanol steam reforming that delivers hydrogen, which is one of the most important fuels for future energy concepts. The method presented is promising for different transition metal/metal oxide systems and hence opens a path to a huge variety of materials.

Details

show
hide
Language(s): eng - English
 Dates: 2016-02-162016-02-16
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000371079300003
DOI: 10.1002/adfm.201503000
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Functional Materials
  Other : Adv. Funct. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH Verlag GmbH
Pages: - Volume / Issue: 26 (7) Sequence Number: - Start / End Page: 1014 - 1020 Identifier: ISSN: 1616-301X
CoNE: https://pure.mpg.de/cone/journals/resource/954925596563