Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance

Lórenz-Fonfria, V. A., Bamann, C., Resler, T., Schlesinger, R., Bamberg, E., & Heberle, J. (2015). Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proceedings of the National Academy of Sciences of the United States of America, 112(43), E5796-E5804. doi:10.1073/pnas.1511462112.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lórenz-Fonfria, Victor A.1, Autor
Bamann, Christian2, Autor           
Resler, Tom1, Autor
Schlesinger, Ramona3, Autor
Bamberg, Ernst2, Autor           
Heberle, Joachim1, Autor
Affiliations:
1Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany, ou_persistent22              
2Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society, ou_2068289              
3Genetic Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: channelrhodopsin; optogenetics; channel gating; infrared spectroscopy; time-resolved spectroscopy
 Zusammenfassung: The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(−) and 1,648(+) cm−1. These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-06-112015-09-182015-10-12
 Publikationsstatus: Online veröffentlicht
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.1511462112
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Kurztitel : PNAS
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : National Academy of Sciences
Seiten: - Band / Heft: 112 (43) Artikelnummer: - Start- / Endseite: E5796 - E5804 Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230