English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Energy spectra in turbulent bubbly flows.

Prakash, V. N., Mercado, J. M., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D., et al. (2016). Energy spectra in turbulent bubbly flows. Journal of Fluid Mechanics, 791, 174-190. doi:10.1017/jfm.2016.49.

Item is

Files

show Files

Creators

show
hide
 Creators:
Prakash, V. N., Author
Mercado, J. M., Author
van Wijngaarden, L., Author
Mancilla, E., Author
Tagawa, Y., Author
Lohse, Detlef1, Author           
Sun, C., Author
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Content

show
hide
Free keywords: Gas/liquid flow; Multiphase and particle-laden flows; Turbulent flows
 Abstract: We conduct experiments in a turbulent bubbly flow to study the nature of the transition between the classical -5/3 energy spectrum scaling for a single-phase turbulent flow and the 3 scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter (Lance & Bataille J. Fluid Mech., vol. 222, 1991, pp. 95-118; Rensen et al., J. Fluid Mech., vol. 538, 2005, pp. 153-187), which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is often used to characterise bubbly flow. We vary the bubblance parameter from b = 1 (pseudoturbulence) to b = 0 (single-phase flow) over 2-3 orders of magnitude (0.01-5) to study its effect on the turbulent energy spectrum and fluctuations in liquid velocity. The probability density functions (PDFs) of the fluctuations in liquid velocity show deviations from the Gaussian profile for b > 0, i.e. when bubbles are present in the system. The PDFs are asymmetric with higher probability in the positive tails. The energy spectra are found to follow the 3 scaling at length scales smaller than the size of the bubbles for bubbly flows. This 3 spectrum scaling holds not only in the well-established case of pseudoturbulence, but surprisingly in all cases where bubbles are present in the system (b > 0). Therefore, it is a generic feature of turbulent bubbly flows, and the bubblance parameter is probably not a suitable parameter to characterise the energy spectrum in bubbly turbulent flows. The physical reason is that the energy input by the bubbles passes over only to higher wavenumbers, and the energy production due to the bubbles can be directly balanced by the viscous dissipation in the bubble wakes as suggested by Lance & Bataille (1991). In addition, we provide an alternative explanation by balancing the energy production of the bubbles with viscous dissipation in the Fourier space.

Details

show
hide
Language(s): eng - English
 Dates: 2016-02-152016-03
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1017/jfm.2016.49
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 791 Sequence Number: - Start / End Page: 174 - 190 Identifier: -