English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Benard turbulence.

Guzman, D. N., Xie, Y. B., Chen, S. Y., Rivas, D. F., Sun, C., Lohse, D., et al. (2016). Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Benard turbulence. Journal of Fluid Mechanics, 787, 331-366. doi:10.1017/jfm.2015.701.

Item is

Files

show Files

Creators

show
hide
 Creators:
Guzman, D. N., Author
Xie, Y. B., Author
Chen, S. Y., Author
Rivas, D. F., Author
Sun, C., Author
Lohse, D.1, Author           
Ahlers, G., Author
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Content

show
hide
Free keywords: Benard convection; Boiling; Turbulent flows
 Abstract: We report on the enhancement of turbulent convective heat transport due to vapour-bubble nucleation at the bottom plate of a cylindrical Rayleigh-Benard sample (aspect ratio 1.00, diameter 8.8 cm) tilled with liquid. Microcavities acted as nucleation sites, allowing for well-controlled bubble nucleation. Only the central part of the bottom plate with a triangular array of microcavities (etched over an area with diameter of 2.5 cm) was heated. We studied the influence of the cavity density and of the superheat T-b - T-on, (T-b is the bottom-plate temperature and T-on, is the value of T-b, below which no nucleation occurred). The effective thermal conductivity, as expressed by the Nusselt number Nu, was measured as a function of the superheat by varying T-b and keeping a fixed difference T-b - T-t similar or equal to 16 K (T-t is the top-plate temperature). Initially T-b was much larger than T-on, (large superheat), and the cavities vigorously nucleated vapour bubbles, resulting in two-phase flow. Reducing T-b in steps until it was below T-on, resulted in cavity deactivation, i.e. in one phase flow. Once all cavities were inactive. T-b was increased again, but they did not reactivate. This led to one-phase flow for positive superheat. The heat transport of both one- and two-phase flow under nominally the same thermal forcing and degree of superheat was measured. The Nusselt number of the two-phase flow was enhanced relative to the one phase system by an amount that increased with increasing T-b Varying the cavity density (69, 32, 3.2, 1.2 and 0.3 mm(-2)) had only a small effect on the global Nu enhancement; it was found that Nu per active site decreased as the cavity density increased. The heat-flux enhancement of an isolated nucleating site was found to be limited by the rate at which the cavity could generate bubbles. Local bulk temperatures of one- and two-phase flows were measured at two positions along the vertical centreline. Rubbles increased the liquid temperature (compared to one-phase flow) as they rose. The increase was correlated with the heat-flux enhancement. The temperature fluctuations, as well as local thermal gradients, were reduced (relative to one-phase flow) by the vapour bubbles. Blocking the large-scale circulation around the nucleating area, as well as increasing the effective buoyancy of the two-phase flow by thermally isolating the liquid column above the heated area, increased the heat-flux enhancement.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-172016-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1017/jfm.2015.701
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 787 Sequence Number: - Start / End Page: 331 - 366 Identifier: -