English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Protein flexibility in the light of structural alphabets

Craveur, P., Joseph, A. P., Esque, J., Narwani, T. J., Noël, F., Shinada, N., et al. (2015). Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2: 20. doi:10.3389/fmolb.2015.00020.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Craveur, Pierrick 1, 2, 3, 4, Author
Joseph, Agnel P.5, Author
Esque, Jeremy6, Author
Narwani, Tarun J.1, 2, 3, 4, Author
Noël, Floriane1, 2, 3, 4, Author
Shinada, Nicolas1, 2, 3, 4, Author
Goguet, Matthieu1, 2, 3, 4, Author
Leonard, Sylvain1, 2, 3, 4, Author
Poulain, Pierre1, 2, 3, 4, 7, Author
Bertrand, Olivier1, 3, 4, Author
Faure, Guilhem8, Author
Rebehmed, Joseph9, Author
Ghozlane, Amine10, Author
Swapna, Lakshmipuram S.11, 12, Author
Bhaskara, Ramachandra13, Author           
Barnoud, Jonathan1, 2, 3, 4, 14, Author
Téletchéa, Stéphane1, 2, 3, 4, 15, Author
Jallu, Vincent16, Author
Cerny, Jiri17, Author
Schneider, Bohdan 17, Author
Etchebest, Catherine1, 2, 3, 4, AuthorSrinivasan, Narayanaswamy11, AuthorGelly, Jean-Christophe 1, 2, 3, 4, Authorde Brevern, Alexandre G.1, 2, 3, 4, Author more..
Affiliations:
1Institut National de la Santé et de la Recherche Médicale U 1134, Paris, France, ou_persistent22              
2UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite, Paris, France, ou_persistent22              
3Institut National de la Transfusion Sanguine, DSIMB, Paris, France, ou_persistent22              
4UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex, Paris, France, ou_persistent22              
5Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, UK, ou_persistent22              
6Institut National de la Santé et de la Recherche Médicale U964,7 UMR Centre National de la Recherche Scientifique 7104, IGBMC, Université de Strasbourg, Illkirch, France, ou_persistent22              
7Ets Poulain, Pointe-Noire, Congo , ou_persistent22              
8National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA, ou_persistent22              
9Centre National de la Recherche Scientifique UMR7590, Sorbonne Universités, Université Pierre et Marie Curie – MNHN – IRD – IUC, Paris, France, ou_persistent22              
10Metagenopolis, INRA, Jouy-en-Josas, France, ou_persistent22              
11Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Bangalore, India, ou_persistent22              
12Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada, ou_persistent22              
13Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068292              
14Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, Centre National de la Recherche Scientifique UMR 5672, Lyon, France, ou_persistent22              
15Faculté des Sciences et Techniques, Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines, Centre National de la Recherche Scientifique UMR 6286, Université Nantes, Nantes, France, ou_persistent22              
16Platelet Unit, Institut National de la Transfusion Sanguine, Paris, France, ou_persistent22              
17Institute of Biotechnology, The Czech Academy of Sciences, Prague, Czech Republic, ou_persistent22              

Content

show
hide
Free keywords: protein structures; disorder; secondary structure; structural alphabet; protein folding; allostery; protein complexes; protein—DNA interactions
 Abstract: Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.

Details

show
hide
Language(s): eng - English
 Dates: 2015-02-282015-04-302015-05-27
 Publication Status: Published online
 Pages: 20
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3389/fmolb.2015.00020
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Molecular Biosciences
  Abbreviation : Front. Mol. Biosci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2 Sequence Number: 20 Start / End Page: - Identifier: ISSN: 2296-889X