English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Psignifit 4: Pain-free Bayesian Inference for Psychometric Functions

Schütt, H., Harmeling, S., Macke, J., & Wichmann, F. (2015). Psignifit 4: Pain-free Bayesian Inference for Psychometric Functions. Poster presented at 15th Annual Meeting of the Vision Sciences Society (VSS 2015), St. Pete Beach, FL, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Schütt, H, Author
Harmeling, S1, Author           
Macke, J2, 3, Author           
Wichmann, F1, Author           
Affiliations:
1Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              
2Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Psychometric functions are frequently used in vision science to model task performance. These sigmoid functions can be fit to data using likelihood maximization, but this ignores the reliability or variance of the point estimates. In contrast Bayesian methods automatically calculate this reliability. However, using Bayesian methods in practice usually requires expert knowledge, user interaction and computation time. Also most methods---including Bayesian ones---are vulnerable to non-stationary observers (whose performance is not constant). For such observers all methods, which assume a stationary binomial observer are overconfident in the estimates. We present Psignifit 4, a new method for fitting psychometric functions, which provides an efficient Bayesian analysis based on numerical integration, which requires little user-interaction and runs in seconds on a common office computer. Additionally it fits a beta-binomial model increasing the stability against non-stationarity and contains standard settings including a heuristic to set the prior based on the interval of stimulus levels in the experimental data. Obviously all properties of the analysis can be adjusted. To test our method it was run on extensive simulated datasets. First we tested the numerical accuracy of our method with different settings and found settings which calculate a good estimate fast and reliably. Testing the statistical properties, we find that our method calculates correct or slightly conservative confidence intervals in all tested conditions, including different sampling schemes, beta-binomial observers, other non-stationary observers and adaptive methods. When enough data was collected to overcome the small sample bias caused by the prior, the point estimates are also essentially unbiased. In summary we present a user-friendly, fast, correct and comprehensively tested Bayesian method to fit psychometric functions, which handles non-stationary observers well and is freely available as an MATLAB implementation online.

Details

show
hide
Language(s):
 Dates: 2015-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/15.12.474
BibTex Citekey: SchuttHMW2015
 Degree: -

Event

show
hide
Title: 15th Annual Meeting of the Vision Sciences Society (VSS 2015)
Place of Event: St. Pete Beach, FL, USA
Start-/End Date: 2015-05-15 - 2015-05-20

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 15 (12) Sequence Number: - Start / End Page: 474 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050