English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On the cumulus diurnal cycle over the tropical warm pool

Ruppert, J. H., & Johnson, R. H. (2016). On the cumulus diurnal cycle over the tropical warm pool. Journal of Advances in Modeling Earth Systems, 8, 669-690. doi:10.1002/2015MS000610.

Item is

Files

show Files
hide Files
:
jame20267.pdf (Publisher version), 3MB
Name:
jame20267.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Ruppert, James H.1, Author
Johnson, Richard H., Author
Affiliations:
1Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913572              

Content

show
hide
Free keywords: Convection, Diurnal, Cumulus, Moistening
 Abstract: An idealized cloud-resolving model experiment is executed to study the prominent cumulus diurnal cycle in suppressed regimes over the tropical warm pool. These regimes are characterized by daytime cumulus invigoration and cloud-layer moistening connected with enhanced diurnal cycles in shortwave radiative heating (SW) and sea surface temperature (SST). The relative roles of diurnally varying SW and SST in this cumulus diurnal cycle are assessed, wherein radiation is modeled and SST is prescribed. Large-scale subsidence is parameterized using the spectral weak temperature gradient (WTG) scheme, such that large-scale vertical motion (wwtg), and hence subsidence drying, is modulated by diurnal changes in diabatic heating. A control simulation exhibits daytime cumulus invigoration that closely matches observations, including midday cloud-layer moistening. This cumulus invigoration is composed of two distinct modes: (1) a midday nonprecipitating (“forced”) mode of predominately shallow clouds, driven by the peak in SST and surface fluxes as the mixed layer deepens and dries; and (2) a precipitating late-afternoon (“active”) mode characterized by deeper clouds in connection with a more moist cloud layer. This cloud-layer moistening is driven by the daytime relaxation of wwtg subsidence, which is prompted by the midday peak in SW. The transition from the surface flux-driven forced mode to the active precipitating mode is accompanied by a transition from relatively small-scale boundary layer circulation cells to larger cells that are highly modulated by cold pools, consistent with observations. When the diurnal cycle is removed, clouds are persistently shallower with virtually no rainfall, emphasizing the inherent nonlinearity of the cumulus diurnal cycle.

Details

show
hide
Language(s): eng - English
 Dates: 2016-05-072016-05-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/2015MS000610
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Advances in Modeling Earth Systems
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 8 Sequence Number: - Start / End Page: 669 - 690 Identifier: ISSN: 1942-2466