English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Regularized moment equations for binary gas mixtures: Derivation and linear analysis

Gupta, V. K., Struchtrup, H., & Torrilhon, M. (2016). Regularized moment equations for binary gas mixtures: Derivation and linear analysis. Physics of Fluids, 28(4): 042003. doi:10.1063/1.4945655.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gupta, V. K.1, Author           
Struchtrup, H., Author
Torrilhon, M., Author
Affiliations:
1Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063306              

Content

show
hide
Free keywords: -
 Abstract: The applicability of the order of magnitude method [H. Struchtrup, “Stable transport equations for rarefied gases at high orders in the Knudsen number,” Phys. Fluids 16, 3921–3934 (2004)] is extended to binary gas mixtures in order to derive various sets of equations—having minimum number of moments at a given order of accuracy in the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential. For simplicity, the equations are derived in the linear regime up to third order accuracy in the Knudsen number. At zeroth order, the method produces the Euler equations; at first order, it results into the Fick, Navier–Stokes, and Fourier equations; at second order, it yields a set of 17 moment equations; and at third order, it leads to the regularized 17-moment equations. The transport coefficients in the Fick, Navier–Stokes, and Fourier equations obtained through order of magnitude method are compared with those obtained through the classical Chapman–Enskog expansion method. It is established that the different temperatures of different constituents do not play a role up to second order accurate theories in the Knudsen number, whereas they do contribute to third order accurate theory in the Knudsen number. Furthermore, it is found empirically that the zeroth, first, and second order accurate equations are linearly stable for all binary gas mixtures; however, although the third order accurate regularized 17-moment equations are linearly stable for most of the mixtures, they are linearly unstable for mixtures having extreme difference in molecular masses.

Details

show
hide
Language(s): eng - English
 Dates: 2016-04-152016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1063/1.4945655
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physics of Fluids
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 37 Volume / Issue: 28 (4) Sequence Number: 042003 Start / End Page: - Identifier: -