Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  New biophysical methods for the characterization of signal transfer in neurons

Roth, A. (2004). New biophysical methods for the characterization of signal transfer in neurons. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift
Alternativer Titel : New biophysical methods for the characterization of signal transfer in neurons

Dateien

einblenden: Dateien
ausblenden: Dateien
:
ROTH_Diss_2004.pdf (beliebiger Volltext), 14MB
 
Datei-Permalink:
-
Name:
ROTH_Diss_2004.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Roth, Arnd1, Autor           
Affiliations:
1Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Neuron, Synapse, Voltage-Clamp-Methode, Aktionspotenzial, Patch-Clamp-Methode, Spine, Kompartimentmodell, Nervennetz / Modell, Dendrit , Neocortex , Synaptischer Strom , Kabelmodell , Dendritische InformationsverarbeitungSpace clamp , Voltage Clamp , Dendritic Spike , Cable Equation , Single Neuron Computation
 Zusammenfassung: Many neurons have extensive dendritic trees, and therefore somatic voltage clamp of dendritic synapses is often associated with substantial distortion and attenuation of the synaptic currents. A new method is presented which permits faithful extraction of the decay time constant of the synaptic conductance independent of dendritic geometry and the electrotonic location of the synapse. The decay time course of the synaptic conductance was recovered with high accuracy in all the tested geometries, even with high series resistances, low membrane resistances, and electrotonically remote, distributed synapses. The method also provides the time course of the voltage change at the synapse in response to a somatic voltage clamp step, and thus will be useful for constraining compartmental models and estimating the relative electrotonic distance of synapses. Action potential propagation in dendrites links information processing in different regions of the dendritic tree. In simulations using compartmental models with identical complements of voltage-gated channels, different dendritic branching patterns caused a range of backpropagation efficacies, similar to that observed experimentally. Dendritic geometry also determines the extent to which modulation of channel densities can affect propagation. Forward propagation of dendritically initiated action potentials is influenced by geometry in a similar manner. By determining the spatial pattern of action potential signalling, dendritic geometry thus helps to define the size and nterdependence of functional compartments in the neuron.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2004-04-272004-04-27
 Publikationsstatus: Erschienen
 Seiten: 118
 Ort, Verlag, Ausgabe: Heidelberg : Ruprecht-Karls-Universität
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 665684
URI: http://www.ub.uni-heidelberg.de/archiv/4589
Anderer: 6326
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: