English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimating discrete curvatures in terms of beta numbers

Kolasinski, S. (in preparation). Estimating discrete curvatures in terms of beta numbers.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002A-7188-9 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-EDF5-F
Genre: Paper

Files

show Files
hide Files
:
1605.00939.pdf (Preprint), 376KB
Name:
1605.00939.pdf
Description:
File downloaded from arXiv at 2016-05-25 13:07
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Kolasinski, Slawomir1, Author              
Affiliations:
1Geometric Measure Theory, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1753352              

Content

show
hide
Free keywords: Mathematics, Classical Analysis and ODEs, math.CA,
 Abstract: For an arbitrary Radon measure $\mu$ we estimate the integrated discrete curvature of $\mu$ in terms of its centred variant of Jones' beta numbers. We farther relate integrals of centred and non-centred beta numbers. As a corollary, employing the recent result of Tolsa [Calc. Var. PDE, 2015], we obtain a partial converse of the theorem of Meurer [arXiv:1510.04523].

Details

show
hide
Language(s):
 Dates: 2016-05-03
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1605.00939
URI: http://arxiv.org/abs/1605.00939
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show