Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  DNA Nanostructures on Membranes as Tools for Synthetic Biology

Czogalla, A., Franquelim, H. G., & Schwille, P. (2016). DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophysical Journal, 110(8), 1698-1707. doi:10.1016/j.bpj.2016.03.015.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S0006349516300650-main.pdf (Verlagsversion), 2MB
Name:
1-s2.0-S0006349516300650-main.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
open access article

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Czogalla, Aleksander1, Autor
Franquelim, Henri G.2, Autor           
Schwille, Petra2, Autor           
Affiliations:
1external, ou_persistent22              
2Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Inhalt

einblenden:
ausblenden:
Schlagwörter: SUPPORTED LIPID-BILAYERS; LIPOPHILIC NUCLEIC-ACIDS; VESICLE FUSION; ANCHORED DNA; PHOSPHOLIPID-MEMBRANES; ORIGAMI NANOSTRUCTURES; NANOSCALE SHAPES; MODEL SYSTEMS; FOLDING DNA; OLIGONUCLEOTIDES
 Zusammenfassung: Over the last decade, functionally designed DNA nanostructures applied to lipid membranes prompted important achievements in the fields of biophysics and synthetic biology. Taking advantage of the universal rules for self-assembly of complementary oligonucleotides, DNA has proven to be an extremely versatile biocompatible building material on the nanoscale. The possibility to chemically integrate functional groups into oligonucleotides, most notably with lipophilic anchors, enabled a widespread usage of DNA as a viable alternative to proteins with respect to functional activity on membranes. As described throughout this review, hybrid DNA-lipid nanostructures can mediate events such as vesicle docking and fusion, or selective partitioning of molecules into phase-separated membranes. Moreover, the major benefit of DNA structural constructs, such as DNA tiles and DNA origami, is the reproducibility and simplicity of their design. DNA nanotechnology can produce functional structures with subnanometer precision and allow for a tight control over their biochemical functionality, e.g., interaction partners. DNA-based membrane nanopores and origami structures able to assemble into two-dimensional networks on top of lipid bilayers are recent examples of the manifold of complex devices that can be achieved. In this review, we will shortly present some of the potentially most relevant avenues and accomplishments of membrane-anchored DNA nanostructures for investigating, engineering, and mimicking lipid membrane-related biophysical processes.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000374859600004
DOI: 10.1016/j.bpj.2016.03.015
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biophysical Journal
  Andere : Biophys. J.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, Mass. : Cell Press
Seiten: - Band / Heft: 110 (8) Artikelnummer: - Start- / Endseite: 1698 - 1707 Identifikator: ISSN: 0006-3495
CoNE: https://pure.mpg.de/cone/journals/resource/954925385117