English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Homology-driven assembly of NOn-redundant protEin sequence sets (NOmESS) for mass spectrometry

Temu, T., Mann, M., Räschle, M., & Cox, J. (2016). Homology-driven assembly of NOn-redundant protEin sequence sets (NOmESS) for mass spectrometry. Bioinformatics, 32(9), 1417-1419. doi:10.1093/bioinformatics/btv756.

Item is

Files

show Files
hide Files
:
Bioinformatics-2016-Temu-1417-9.pdf (Any fulltext), 117KB
Name:
Bioinformatics-2016-Temu-1417-9.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
open access article
License:
-

Locators

show

Creators

show
hide
 Creators:
Temu, Tikira1, Author           
Mann, Matthias2, Author           
Räschle, Markus2, Author           
Cox, Jürgen1, Author           
Affiliations:
1Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_2063284              
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Content

show
hide
Free keywords: Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics;
 Abstract: To enable mass spectrometry (MS)-based proteomic studies with poorly characterized organisms, we developed a computational workflow for the homology-driven assembly of a non-redundant reference sequence dataset. In the automated pipeline, translated DNA sequences (e.g. ESTs, RNA deep-sequencing data) are aligned to those of a closely related and fully sequenced organism. Representative sequences are derived from each cluster and joined, resulting in a non-redundant reference set representing the maximal available amino acid sequence information for each protein. We here applied NOmESS to assemble a reference database for the widely used model organism Xenopus laevis and demonstrate its use in proteomic applications.

Details

show
hide
Language(s): eng - English
 Dates: 2016
 Publication Status: Published in print
 Pages: 3
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Bioinformatics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press
Pages: - Volume / Issue: 32 (9) Sequence Number: - Start / End Page: 1417 - 1419 Identifier: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991