Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Macromolecular diffractive imaging using imperfect crystals

Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202-206. doi:10.1038/nature16949.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1038/nature16949 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Ayyer, Kartik1, Autor
Yefanov, Oleksandr M.1, Autor
Oberthür, Dominik2, Autor
Roy-Chowdhury, Shatabdi3, 4, Autor
Galli, Lorenzo1, 2, Autor
Mariani, Valerio1, Autor
Basu, Shibom3, 4, Autor
Coe, Jesse3, 4, Autor
Conrad, Chelsie E.3, 4, Autor
Fromme, Raimund3, 4, Autor
Schaffer, Alexander3, 4, Autor
Dörner, Katerina1, 3, Autor
James, Daniel4, 5, Autor
Kupitz, Christopher3, 6, Autor
Metz, Markus2, Autor
Nelson, Garrett4, 5, Autor
Paulraj, Lourdu Xavier1, 2, 7, Autor           
Beyerlein, Kenneth R.1, Autor
Schmidt, Marius6, Autor
Sarrou, Iosifina8, Autor
Spence, John C. H.4, 5, AutorWeierstall, Uwe4, 5, AutorWhite, Thomas A.1, AutorYang, Jay-How3, 4, AutorZhao, Yun4, 5, AutorLiang, Mengning9, AutorAquila, Andrew9, AutorHunter, Mark S.9, AutorRobinson, Joseph S.9, AutorKoglin, Jason E.9, AutorBoutet, Sébastien9, AutorFromme, Petra3, 4, AutorBarty, Anton1, AutorChapman, Henry N.1, 2, 10, Autor mehr..
Affiliations:
1Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany, ou_persistent22              
2Department of Physics, University of Hamburg, 22761 Hamburg, Germany, ou_persistent22              
3School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA, ou_persistent22              
4Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA, ou_persistent22              
5Department of Physics, Arizona State University, Tempe, Arizona 85287, USA, ou_persistent22              
6Physics Department, University of Wisconsin, Milwaukee, Wisconsin 53211, USA, ou_persistent22              
7International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266714              
8Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, GR-70013 Crete, Greece, ou_persistent22              
9Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC), National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA, ou_persistent22              
10Centre for Ultrafast Imaging, 22607 Hamburg, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Biological physics; X-rays; Nanocrystallography; Optics and photonics; X-ray crystallography
 Zusammenfassung: The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-07-132015-12-142016-02-102016-02-11
 Publikationsstatus: Erschienen
 Seiten: 19
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/nature16949
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 530 (7589) Artikelnummer: - Start- / Endseite: 202 - 206 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238