Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Stimulus-driven reorienting impairs executive control of attention: Evidence for a common bottleneck in anterior insula

Trautwein, F.-M., Singer, T., & Kanske, P. (2016). Stimulus-driven reorienting impairs executive control of attention: Evidence for a common bottleneck in anterior insula. Cerebral Cortex, 26(11), 4136-4147. doi:10.1093/cercor/bhw225.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Trautwein_2016.pdf (Verlagsversion), 869KB
Name:
Trautwein_2016.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Trautwein, Fynn-Mathis1, Autor           
Singer, Tania1, Autor           
Kanske, Philipp1, Autor           
Affiliations:
1Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634552              

Inhalt

einblenden:
ausblenden:
Schlagwörter: fMRI; Functional connectivity; Flanker task; Spatial cueing
 Zusammenfassung: A classical model of human attention holds that independent neural networks realize stimulus-driven reorienting and executive control of attention. Questioning full independence, the two functions do, however, engage overlapping networks with activations in cingulo-opercular regions such as anterior insula (AI) and a reverse pattern of activation (stimulus-driven reorienting), and deactivation (executive control) in temporoparietal junction (TPJ). To test for independent versus shared neural mechanisms underlying stimulus-driven and executive control of attention, we used fMRI and a task that isolates individual from concurrent demands in both functions. Results revealed super-additive increases of left AI activity and behavioral response costs under concurrent demands, suggesting a common bottleneck for stimulus-driven reorienting and executive control of attention. These increases were mirrored by non-additive decreases of activity in the default mode network (DMN), including posterior TPJ, regions where activity increased with off-task processes. The deactivations in posterior TPJ were spatially separated from stimulus-driven reorienting related activation in anterior TPJ, a differentiation that replicated in task-free resting state. Furthermore, functional connectivity indicated inhibitory coupling between posterior TPJ and AI during concurrent attention demands. These results demonstrate a role of AI in stimulus-driven and executive control of attention that involves down-regulation of internally directed processes in DMN.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-06-242016-07-022016-08-222016-10-17
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/cercor/bhw225
PMID: 27550866
PMC: PMC5066828
Anderer: Epub ahead of print
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cerebral Cortex
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 26 (11) Artikelnummer: - Start- / Endseite: 4136 - 4147 Identifikator: ISSN: 1047-3211
CoNE: https://pure.mpg.de/cone/journals/resource/954925592440