Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Enhanced electron-phonon coupling in graphene with periodically distorted lattice

Pomarico, E., Mitrano, M., Bromberger, H., Sentef, M. A., Al-Temimy, A., Coletti, C., et al. (2017). Enhanced electron-phonon coupling in graphene with periodically distorted lattice. Physical Review B, 95(2): 024304. doi:10.1103/PhysRevB.95.024304.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
cmd-2017-Pomarico-PhyRB.95.024304.pdf (Verlagsversion), 392KB
Name:
cmd-2017-Pomarico-PhyRB.95.024304.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
© American Physical Society

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1103/PhysRevB.95.024304 (Verlagsversion)
Beschreibung:
-
OA-Status:
externe Referenz:
https://arxiv.org/abs/1607.02314 (Preprint)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Pomarico, Enrico1, 2, Autor           
Mitrano, Matteo1, 3, Autor           
Bromberger, Hubertus1, Autor           
Sentef, M. A.4, Autor           
Al-Temimy, A.5, Autor
Coletti, C.5, Autor
Stöhr, A.6, Autor
Link, S.6, Autor
Starke, U.6, Autor
Cacho, C.7, Autor
Chapman, R.7, Autor
Springate, E.7, Autor
Cavalleri, Andrea1, 8, Autor           
Gierz, Isabella9, Autor           
Affiliations:
1Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938293              
2Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), ou_persistent22              
3Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, ou_persistent22              
4Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3012828              
5Center for Nanotechnology at NEST, Istituto Italiano di Tecnologia, Pisa, ou_persistent22              
6Max Planck Institute for Solid State Research, Stuttgart, Germany, ou_persistent22              
7Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell, United Kingdom, ou_persistent22              
8Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom, ou_persistent22              
9Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938295              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Condensed Matter; Materials Science
 Zusammenfassung: Electron-phonon coupling directly determines the stability of cooperative order in solids, including
superconductivity, charge, and spin density waves. Therefore, the ability to enhance or reduce electron-phonon
coupling by optical driving may open up new possibilities to steer materials’ functionalities, potentially at high
speeds. Here, we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by
driving optically active in-plane bond stretching vibrations with femtosecond midinfrared pulses. The driven state
is studied by two different ultrafast spectroscopic techniques. First, terahertz time-domain spectroscopy reveals
that the Drude scattering rate decreases upon driving. Second, the relaxation rate of hot quasiparticles, as measured
by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are
quantitatively consistent with one another and can be explained by a transient threefold enhancement of the
electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments,
which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was
driven.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-07-082016-07-082017-01-132017-01-13
 Publikationsstatus: Erschienen
 Seiten: 5
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevB.95.024304
arXiv: 1607.02314
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Collaborative Research Centre SFB925, as well as the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 696656-GrapheneCore1. Access to the Artemis facility at the Rutherford Appleton Laboratory was funded by STFC. E.P. acknowledges financial support from the Swiss National Science Foundation through an Advanced Postdoc Mobility Grant.
Grant ID : -
Förderprogramm : Priority Program (SPP1459)
Förderorganisation : DFG
Projektname : Collaborative Research Centre SFB925, as well as the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 696656-GrapheneCore1. Access to the Artemis facility at the Rutherford Appleton Laboratory was funded by STFC. E.P. acknowledges financial support from the Swiss National Science Foundation through an Advanced Postdoc Mobility Grant.
Grant ID : 696656
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 95 (2) Artikelnummer: 024304 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008