English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Wave-function inspired density functional applied to the H2/H2+ challenge

Zhang, I. Y., Rinke, P., & Scheffler, M. (2016). Wave-function inspired density functional applied to the H2/H2+ challenge. New Journal of Physics, 18(7): 073026. doi:10.1088/1367-2630/18/7/073026.

Item is

Files

show Files
hide Files
:
njp_18_7_073026.pdf (Publisher version), 2MB
Name:
njp_18_7_073026.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2016
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Zhang, Igor Ying1, Author           
Rinke, Patrick1, 2, Author           
Scheffler, Matthias1, 3, Author           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
2Department of Applied Physics, Aalto University, PO Box 11100, Aalto FI-00076, Finland, ou_persistent22              
3Department of Chemistry and Biochemistry and Materials Department, University of California-Santa Barbara, Santa Barbara, CA 93106-5050, USA, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We start from the Bethe–Goldstone equation (BGE) to derive a simple orbital-dependent correlation functional—BGE2— which terminates the BGE expansion at the second-order, but retains the self-consistent coupling of electron-pair correlations. We demonstrate that BGE2 is size consistent and one-electron 'self-correlation' free. The electron-pair correlation coupling ensures the correct H2 dissociation limit and gives a finite correlation energy for any system even if it has a no energy gap. BGE2 provides a good description of both H2 and H2+ dissociation, which is regarded as a great challenge in density functional theory (DFT). We illustrate the behavior of BGE2 analytically by considering H2 in a minimal basis. Our analysis shows that BGE2 captures essential features of the adiabatic connection path that current state-of-the-art DFT approximations do not.

Details

show
hide
Language(s):
 Dates: 2016-06-152016-04-142016-06-202016-07-12
 Publication Status: Published online
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1088/1367-2630/18/7/073026
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: New Journal of Physics
  Abbreviation : New J. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol : IOP Publishing
Pages: 16 Volume / Issue: 18 (7) Sequence Number: 073026 Start / End Page: - Identifier: ISSN: 1367-2630
CoNE: https://pure.mpg.de/cone/journals/resource/954926913666