English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Neuroimaging genetic analyses of novel candidate genes associated with reading and language

Gialluisi, A., Guadalupe, T., Francks, C., & Fisher, S. E. (2017). Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain and Language, 172, 9-15. doi:10.1016/j.bandl.2016.07.002.

Item is

Files

show Files
hide Files
:
mmc1.docx (Supplementary material), 127KB
Name:
mmc1.docx
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/vnd.openxmlformats-officedocument.wordprocessingml.document / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
Gialluisi_etal_2017.pdf (Publisher version), 526KB
Name:
Gialluisi_etal_2017.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Gialluisi, Alessandro1, 2, Author           
Guadalupe, Tulio1, Author           
Francks, Clyde1, 3, 4, Author           
Fisher, Simon E.1, 3, Author           
Affiliations:
1Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society, ou_792549              
2Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany, ou_persistent22              
3Donders Institute for Brain, Cognition and Behaviour, External Organizations, ou_55236              
4Imaging Genomics, MPI for Psycholinguistics, Max Planck Society, Wundtlaan 1, 6525 XD Nijmegen, NL, ou_2579692              

Content

show
hide
Free keywords: -
 Abstract: Neuroimaging measures provide useful endophenotypes for tracing genetic effects on reading and language. A recent Genome-Wide Association Scan Meta-Analysis (GWASMA) of reading and language skills (N = 1862) identified strongest associations with the genes CCDC136/FLNC and RBFOX2. Here, we follow up the top findings from this GWASMA, through neuroimaging genetics in an independent sample of 1275 healthy adults. To minimize multiple-testing, we used a multivariate approach, focusing on cortical regions consistently implicated in prior literature on developmental dyslexia and language impairment. Specifically, we investigated grey matter surface area and thickness of five regions selected a priori: middle temporal gyrus (MTG); pars opercularis and pars triangularis in the inferior frontal gyrus (IFG-PO and IFG-PT); postcentral parietal gyrus (PPG) and superior temporal gyrus (STG). First, we analysed the top associated polymorphisms from the reading/language GWASMA: rs59197085 (CCDC136/FLNC) and rs5995177 (RBFOX2). There was significant multivariate association of rs5995177 with cortical thickness, driven by effects on left PPG, right MTG, right IFG (both PO and PT), and STG bilaterally. The minor allele, previously associated with reduced reading-language performance, showed negative effects on grey matter thickness. Next, we performed exploratory gene-wide analysis of CCDC136/FLNC and RBFOX2; no other associations surpassed significance thresholds. RBFOX2 encodes an important neuronal regulator of alternative splicing. Thus, the prior reported association of rs5995177 with reading/language performance could potentially be mediated by reduced thickness in associated cortical regions. In future, this hypothesis could be tested using sufficiently large samples containing both neuroimaging data and quantitative reading/language scores from the same individuals.

Details

show
hide
Language(s): eng - English
 Dates: 2016-07-272017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.bandl.2016.07.002
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Brain and Language
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Orlando, Fla. : Academic Press
Pages: - Volume / Issue: 172 Sequence Number: - Start / End Page: 9 - 15 Identifier: ISSN: 0093-934X
CoNE: https://pure.mpg.de/cone/journals/resource/954922647078