English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches

Kern, S., Ozsoy-Çiçek, B., & Worby, A. P. (2016). Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sensing, 8(7): 538. doi:10.3390/rs8070538.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kern, Stefan1, Author           
Ozsoy-Çiçek, Burcu, Author
Worby, Anthony P., Author
Affiliations:
1I 1 - Integrated Climate Data Center, Integrated Activities, The CliSAP Cluster of Excellence, External Organizations, ou_1863492              

Content

show
hide
Free keywords: -
 Abstract: Accurate circum-Antarctic sea-ice thickness is urgently required to better understand the different sea-ice cover evolution in both polar regions. Satellite radar and laser altimetry are currently the most promising tools for sea-ice thickness retrieval. We present qualitative inter-comparisons of winter and spring circum-Antarctic sea-ice thickness computed with different approaches from Ice Cloud and land Elevation Satellite (ICESat) laser altimeter total (sea ice plus snow) freeboard estimates. We find that approach A, which assumes total freeboard equals snow depth, and approach B, which uses empirical linear relationships between freeboard and thickness, provide the lowest sea-ice thickness and the smallest winter-to-spring increase in seasonal average modal and mean sea-ice thickness: A: 0.0 m and 0.04 m, B: 0.17 and 0.16 m, respectively. Approach C uses contemporary snow depth from satellite microwave radiometry, and we derive comparably large sea-ice thickness. Here we observe an unrealistically large winter-to-spring increase in seasonal average modal and mean sea-ice thickness of 0.68 m and 0.65 m, respectively, which we attribute to biases in the snow depth. We present a conceptually new approach D. It assumes that the two-layer system (sea ice, snow) can be represented by one layer. This layer has a modified density, which takes into account the influence of the snow on sea-ice buoyancy. With approach D we obtain thickness values and a winter-to-spring increase in average modal and mean sea-ice thickness of 0.17 m and 0.23 m, respectively, which lay between those of approaches B and C. We discuss retrieval uncertainty, systematic uncertainty sources, and the impact of grid resolution. We find that sea-ice thickness obtained with approaches C and D agrees best with independent sea-ice thickness information—if we take into account the potential bias of in situ and ship-based observations.

Details

show
hide
Language(s): eng - English
 Dates: 2016
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.3390/rs8070538
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Remote Sensing
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 8 (7) Sequence Number: 538 Start / End Page: - Identifier: -