hide
Free keywords:
-
Abstract:
This study reports on the successful synthesis and on the properties of polycrystalline AgPbmSnSe2+m (m = 8, 100, 50, 25) samples with a rock salt structure. Between approximate to 160 and approximate to 400 K, the dominant scattering process of the carriers in this system changes from acoustic phonon scattering in PbSe to ionized impurity scattering in AgPbmSnSe2+m, which synergistically optimizes electrical and thermal transport properties. Thanks to the faint amount of AgSnSe2, the Seebeck coefficient is enhanced by boosting the scattering factor, the electric conductivity is improved by the increase of the concentration of holes coupled to a limited degradation of their mobility, and the total thermal conductivity is reduced by suppressing bipolar thermal conductivity. Therefore, ZT of AgPbmSnSe2+m (m = 50) reaches 1.3 at 889 K. The mechanism suggested in this study opens new paths to improve the thermoelectric performances of other families of materials.