English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modeling the partial volume effect using FEM in the EEG forward problem

Sonntag, H., Vorwerk, J., Wolters, C., Grasedyck, L., Haueisen, J., & Maess, B. (2014). Modeling the partial volume effect using FEM in the EEG forward problem. Talk presented at Innovative Verarbeitung bioelektrischer und biomagnetischer Signale. Berlin, Germany. 2014-04-10 - 2014-04-11.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002B-61F9-1 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-9EBA-B
Genre: Talk

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sonntag, Hermann1, Author              
Vorwerk, Johannes2, Author
Wolters, Carsten2, Author
Grasedyck, Lars3, Author
Haueisen, Jens4, Author
Maess, Burkhard1, Author              
Affiliations:
1Methods and Development Group MEG and EEG - Cortical Networks and Cognitive Functions, MPI for Human Cognitive and Brain Sciences, Max Planck Society, Leipzig, DE, ou_2205650              
2University of Muenster, Institute for Biomagnetism and Biosignalanalysis, 48149 Muenster, Germany, ou_persistent22              
3RWTH Aachen, Institut für Geometrie und Praktische Mathematik, 52056 Aachen, Germany, ou_persistent22              
4Ilmenau University of Technology, Institute of Biomedical Engineering and Informatics, 98693 Ilmenau, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Electroencephalography (EEG) allows noninvasive assessment of neuronal brain activity by means of source reconstruction (inverse modeling). A state of the art modeling of the field distribution with high spatial resolution (~ 1 mm) is performed with the finite element (FE) method. Realistic FE models of the human head depend on the segmentation of the different tissues inside the head. A variety of segmentation algorithms—like adaptive fuzzy c-means (AFCM) or SPM’s tissue probability map (TPM) algorithm—estimate for each element the probabilities of belonging to certain tissue classes. In the classical way the most likely tissue determines the element conductivity. We refer to this as the ordinary model. Here, we tested alternative strategies for assigning conductivities to elements. We estimated a weighted average of conductivities of all tissues which had a probability higher than zero and assigned this to the elements. We tried geometric averaging and an anisotropic conductivity model, but in general we did not observe improvements over the ordinary model.

Details

show
hide
Language(s): eng - English
 Dates: 2014-04-10
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: Innovative Verarbeitung bioelektrischer und biomagnetischer Signale
Place of Event: Berlin, Germany
Start-/End Date: 2014-04-10 - 2014-04-11

Legal Case

show

Project information

show

Source

show