Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Experimental evolution of metabolic dependency in bacteria

D'Souza, G., & Kost, C. (2016). Experimental evolution of metabolic dependency in bacteria. PLoS Genetics, 12(11): e1006364. doi:10.1371/journal.pgen.1006364.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
KOS020.pdf (Verlagsversion), 4MB
Name:
KOS020.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
KOS020s1.zip (Ergänzendes Material), 2MB
Name:
KOS020s1.zip
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1371/journal.pgen.1006364 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
D'Souza, Glen1, 2, Autor           
Kost, Christian3, Autor           
Affiliations:
1Research Group Dr. C. Kost, Experimental Ecology and Evolution, MPI for Chemical Ecology, Max Planck Society, ou_421906              
2IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society, Jena, DE, ou_421900              
3Research Group Dr. C. Kost, Experimental Ecology and Evolution, Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society, ou_421906              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacteria frequently lose biosynthetic genes, thus making them dependent on an environmental uptake of the corresponding metabolite. Despite the ubiquity of this ‘genome streamlining’, it is generally unclear whether the concomitant loss of biosynthetic functions is favored by natural selection or rather caused by random genetic drift. Here we demonstrate experimentally that a loss of metabolic functions is strongly selected for when the corresponding metabolites can be derived from the environment. Serially propagating replicate populations of the bacterium Escherichia coli in amino acid-containing environments revealed that auxotrophic genotypes rapidly evolved in less than 2,000 generations in almost all replicate populations. Moreover, auxotrophs also evolved in environments lacking amino acids–yet to a much lesser extent. Loss of these biosynthetic functions was due to mutations in both structural and regulatory genes. In competition experiments performed in the presence of amino acids, auxotrophic mutants gained a significant fitness advantage over the evolutionary ancestor, suggesting their emergence was selectively favored. Interestingly, auxotrophic mutants derived amino acids not only via an environmental uptake, but also by cross-feeding from coexisting strains. Our results show that adaptive fitness benefits can favor biosynthetic loss-of-function mutants and drive the establishment of intricate metabolic interactions within microbial communities.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-092016-11-042016
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: KOS020
DOI: 10.1371/journal.pgen.1006364
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Genetics
  Andere : PLoS Genet.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 12 (11) Artikelnummer: e1006364 Start- / Endseite: - Identifikator: ISSN: 1553-7390
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180