English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Sorsby Fundus Dystrophy Mutation Timp3S156C Affects the Morphological and Biochemical Phenotype But Not Metalloproteinase Homeostasis

Soboleva, G., Geis, B., Schrewe, H., & Weber, B. H. F. (2003). Sorsby Fundus Dystrophy Mutation Timp3S156C Affects the Morphological and Biochemical Phenotype But Not Metalloproteinase Homeostasis. Journal of Cellular Physiology, 197(1), 149-156.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Soboleva, Galina, Author
Geis, Birgit, Author
Schrewe, Heinrich1, Author              
Weber, Bernhard H. F., Author
Affiliations:
1Department of Developmental Biology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society, ou_2243650              

Content

show
hide
Free keywords: -
 Abstract: The tissue inhibitor of metalloproteinases-3 (TIMP3) is a multifunctional protein tightly associated with the extracellular matrix (ECM). A specific type of mutation in TIMP3 which results in potentially unpaired cysteine residues at the C-terminus of the protein has been shown to cause Sorsby fundus dystrophy (SFD), an autosomal dominant retinopathy of late onset. An early finding in SFD is a striking accumulation of protein and lipid material in Bruch's membrane, a multilayered ECM structure located between the choroid and the RPE. To study the molecular mechanisms underlying SFD pathology, we recently generated two mouse lines, one deficient in Timp3 (Timp3-/-) and one carrying an SFD-related mutation in the orthologous murine Timp3 gene (Timp3S156C/S156C). We now established immortalized fibroblast cells from the mutant mouse strains and provide evidence that the various cell lines display distinct morphological and physiological features that are dependent on the mutational status of the Timp3 protein in the secreted ECM. We show that matrix metalloproteinase (MMP) activity and inhibitory properties of Timp3 are not affected by the SFD-associated mutation. We further demonstrate that Timp3S156C protein accumulates in the ECM of the mutant fibroblast cells and that this accumulation is not due to a prolonged turnover rate of mutant vs. normal Timp3. We also show that the relative abundance of mutant and normal Timp3 in the ECM has no measurable effects on cellular phenotypes. Together, these findings suggest (i) a functional role of normal Timp3 in pathways determining cellular morphology and (ii) a loss of this particular function as a consequence of the Ser156Cys mutation. We therefore hypothesize that SFD pathogenesis is due to a loss-of-function mutation in TIMP3.

Details

show
hide
Language(s): eng - English
 Dates: 2003-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 126778
ISI: 000185090700016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Cellular Physiology
  Alternative Title : J. Cell. Physiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 197 (1) Sequence Number: - Start / End Page: 149 - 156 Identifier: ISSN: 0021-9541