日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Higher-order brain areas associated with real-time functional MRI neurofeedback training of the somato-motor cortex.

Auer, T., Dewiputri, W. I., Frahm, J., & Schweizer, R. (2018). Higher-order brain areas associated with real-time functional MRI neurofeedback training of the somato-motor cortex. Neuroscsience, 378, 22-33. doi:10.1016/j.neuroscience.2016.04.034.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
2351014.pdf (出版社版), 3MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0001-4536-5
ファイル名:
2351014.pdf
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Auer, T.1, 著者           
Dewiputri, W. I.1, 著者           
Frahm, J.1, 著者           
Schweizer, R.1, 著者           
所属:
1Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society, ou_578634              

内容説明

表示:
非表示:
キーワード: Functional magnetic resonance imaging; functional connectivity; motor imagery; neurofeedback; skill-learning
 要旨: Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2016-04-292018-05-15
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.neuroscience.2016.04.034
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Neuroscsience
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 378 通巻号: - 開始・終了ページ: 22 - 33 識別子(ISBN, ISSN, DOIなど): -