English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures

Knorr, J., Sokkar, P., Schott, S., Costa, P., Thiel, W., Sander, W., et al. (2016). Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures. Nature Communications, 7: 12968. doi:10.1038/ncomms12968.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Knorr, Johannes1, Author
Sokkar, Pandian2, Author              
Schott, Sebastian3, Author
Costa, Paolo4, Author
Thiel, Walter5, Author              
Sander, Wolfram4, Author
Sanchez-Garcia, Elsa2, Author              
Nuernberger, Patrick1, Author
Affiliations:
1Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany, ou_persistent22              
2Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1950289              
3Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, ou_persistent22              
4Organische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany, ou_persistent22              
5Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              

Content

show
hide
Free keywords: -
 Abstract: Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.

Details

show
hide
Language(s): eng - English
 Dates: 2016-03-072016-08-222016-10-06
 Publication Status: Published online
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/ncomms12968
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 7 Sequence Number: 12968 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723