ausblenden:
Schlagwörter:
Computer Science, Computer Vision and Pattern Recognition, cs.CV
Zusammenfassung:
Real-time marker-less hand tracking is of increasing importance in
human-computer interaction. Robust and accurate tracking of arbitrary hand
motion is a challenging problem due to the many degrees of freedom, frequent
self-occlusions, fast motions, and uniform skin color. In this paper, we
propose a new approach that tracks the full skeleton motion of the hand from
multiple RGB cameras in real-time. The main contributions include a new
generative tracking method which employs an implicit hand shape representation
based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is
smooth and analytically differentiable making fast gradient based pose
optimization possible. This shape representation, together with a full
perspective projection model, enables more accurate hand modeling than a
related baseline method from literature. Our method achieves better accuracy
than previous methods and runs at 25 fps. We show these improvements both
qualitatively and quantitatively on publicly available datasets.