hide
Free keywords:
-
Abstract:
Regardless of the site of current injection, action potentials usually originate at or near the soma and propagate decrementally back into the dendrites. This phenomenon has been observed in neocortical pyramidal cells as well as in cultured motoneurons. Here we show that action potentials in motoneurons can be initiated in the dendrite as well, resulting in a biphasic dendritic action potential. We present a model of spinal motoneurons that is consistent with observed physiological properties of spike initiation in the initial segment/axon hillock region and action potential back-propagation into the dendritic tree. It accurately reproduces the results presented by Larkum et al. on motoneurons in organotypic rat spinal cord slice cultures. A high Na+-channel density of Na = 700 mS/cm2 at the axon hillock/initial segment region was required to secure antidromic invasion of the somato-dendritic membrane, whereas for the orthodromic direction, a Na+-channel density of Na = 1,200 mS/cm2 was required. A "weakly" excitable (Na = 3 mS/cm2) dendritic membrane most accurately describes the experimentally observed attenuation of the back-propagated action potential. Careful analysis of the threshold conditions for action potential initiation at the initial segment or the dendrites revealed that, despite the lower voltage threshold for spike initiation in the initial segment, an action potential can be initiated in the dendrite before the initial segment fires a spike. Spike initiation in the dendrite depends on the passive cable properties of the dendritic membrane, its Na+-channel density, and local structural properties, mainly the diameter of the dendrites. Action potentials are initiated more easily in distal than in proximal dendrites. Whether or not such a dendritic action potential invades the soma with a subsequent initiation of a second action potential in the initial segment depends on the actual current source-load relation between the action potential approaching the soma and the electrical load of the soma together with the attached dendrites.