English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Simple permutation-based measure of quantum correlations and maximally-3-tangled states

Bhosale, U. T., & Lakshminarayan, A. (2016). Simple permutation-based measure of quantum correlations and maximally-3-tangled states. Physical Review A, 94(2): 022344. doi:10.1103/PhysRevA.94.022344.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Bhosale, Udaysinh T.1, Author
Lakshminarayan, Arul2, Author           
Affiliations:
1external, ou_persistent22              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Content

show
hide
Free keywords: -
 MPIPKS: Semiclassics and chaos in quantum systems
 Abstract: Quantities invariant under local unitary transformations are of natural interest in the study of entanglement. This paper deduces and studies a particularly simple quantity that is constructed from a combination of two standard permutations of the density matrix, namely, realignment and partial transpose. This bipartite quantity, denoted here as R-12, vanishes on large classes of separable states including classical-quantum correlated states, while being maximum for only maximally entangled states. It is shown to be naturally related to the 3-tangle in three-qubit states via their two-qubit reduced density matrices. Upper and lower bounds on concurrence and negativity of two-qubit density matrices for all ranks are given in terms of R-12. Ansatz states satisfying these bounds are given and verified using various numerical methods. In the rank-2 case, it is shown that the states satisfying the lower bound on R-12 versus concurrence define a class of three-qubit states that maximize the tripartite entanglement (the 3-tangle) given an amount of entanglement between a pair of them. The measure R-12 is conjectured, via numerical sampling, to be always larger than the concurrence and negativity. In particular, this is shown to be true for the physically interesting case of X states.

Details

show
hide
Language(s):
 Dates: 2016-08-312016-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1103/PhysRevA.94.022344
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review A
  Other : Phys. Rev. A
  Other : Physical Review A: Atomic, Molecular, and Optical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : American Physical Society
Pages: - Volume / Issue: 94 (2) Sequence Number: 022344 Start / End Page: - Identifier: ISSN: 1050-2947
CoNE: https://pure.mpg.de/cone/journals/resource/954925225012_2