English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Wettability controls slow immiscible displacement through local interfacial instabilities.

Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de la Lama, M., & Herminghaus, S. (2016). Wettability controls slow immiscible displacement through local interfacial instabilities. Physical Review Fluids, 1(7): 074202. doi:10.1103/PhysRevFluids.1.074202.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Jung, Michael1, Author           
Brinkmann, Martin2, Author           
Seemann, Ralf1, Author           
Hiller, Thomas2, Author           
Sanchez de la Lama, Marta2, Author           
Herminghaus, Stephan3, Author           
Affiliations:
1Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063311              
2Group Theory of wet random assemblies, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063303              
3Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063306              

Content

show
hide
Free keywords: -
 Abstract: Immiscible fluid displacement with average front velocities in the capillary-dominated regime is studied in a transparent Hele-Shaw cell with cylindrical posts. Employing various combinations of fluids and wall materials allows us to cover a range of advancing contact angles 46◦ θa 180◦ of the invading fluid in our experiments. In parallel, we study the displacement process in particle-based simulations that account for wall wettability. Considering the same arrangement of posts in experiments and simulation, we find a consistent crossover between stable interfacial displacement at θa 80◦ and capillary fingering at high contact angles θa 120◦. The position of the crossover is quantified through the evolution of the interface length and the final saturation of the displaced fluid. A statistical analysis of the local displacement processes demonstrates that the shape evolution of the fluid front is governed by local instabilities as proposed by Cieplak and Robbins for a quasistatic interfacial displacement [Cieplak and Robbins, Phys. Rev. Lett. 60, 2042 (1988)]. The regime of stable front advances coincides with a corresponding region of contact angles where cooperative interfacial instabilities prevail. Capillary fingering, however, is observed only for large θa , where noncooperative instabilities dominate the invasion process.

Details

show
hide
Language(s): eng - English
 Dates: 2016-11-032016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevFluids.1.074202
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Fluids
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 19 Volume / Issue: 1 (7) Sequence Number: 074202 Start / End Page: - Identifier: -