Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain

Kwon, M. J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L., et al. (2017). Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology, 23(6): 13558, pp. 2396-2412. doi:10.1111/gcb.13558.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC2546s1.docx (Ergänzendes Material), 131KB
 
Datei-Permalink:
-
Name:
BGC2546s1.docx
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/vnd.openxmlformats-officedocument.wordprocessingml.document
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
BGC2546.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
BGC2546.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kwon, Min Jung1, 2, Autor           
Beulig, Felix, Autor
Ilie, Iulia1, 3, Autor           
Wildner, Marcus, Autor
Küsel, Kirsten, Autor
Merbold, Lutz, Autor
Mahecha, Miguel D.3, Autor           
Zimov, Nikita, Autor
Zimov, Sergey A., Autor
Heimann, Martin4, Autor           
Schuur, Edward A. G., Autor
Kostka, Joel E., Autor
Kolle, Olaf5, Autor           
Hilke, Ines6, Autor           
Göckede, Mathias2, Autor           
Affiliations:
1IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497757              
2Integrating surface-atmosphere Exchange Processes Across Scales - Modeling and Monitoring, Dr. Mathias Göckede, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938313              
3Empirical Inference of the Earth System, Dr. Miguel D. Mahecha, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938312              
4Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497755              
5Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497769              
6Service Facility Routine Measurements and Analysis (RoMA), I. Hilke, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497770              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: As surface temperatures are expected to rise in the future, ice-rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade-long drying manipulation on an Arctic floodplain influences CH4-associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage-induced changes may then modify CH4 fluxes in the growing and non-growing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with post-drainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the non-growing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long-term drainage considerably reduced CH4 fluxes through modified ecosystem properties.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-11-072016-11-302017
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC2546
DOI: 10.1111/gcb.13558
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Global Change Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford, UK : Blackwell Science
Seiten: - Band / Heft: 23 (6) Artikelnummer: 13558 Start- / Endseite: 2396 - 2412 Identifikator: ISSN: 1354-1013
CoNE: https://pure.mpg.de/cone/journals/resource/954925618107