English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Confirmation of the cholinergic specificity of the Chol-1 gangliosides in mammalian brain using affinity-purified antisera and lesions affecting the cholinergic input to the hippocampus.

Derrington, E., Masco, D., & Whittaker, V. P. (1989). Confirmation of the cholinergic specificity of the Chol-1 gangliosides in mammalian brain using affinity-purified antisera and lesions affecting the cholinergic input to the hippocampus. Journal of Neurochemistry, 53(6), 1686-1692. doi:10.1111/j.1471-4159.1989.tb09231.x.

Item is

Files

show Files
hide Files
:
2358991.pdf (Publisher version), 881KB
Name:
2358991.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Derrington, E.A.1, Author           
Masco, D.2, Author           
Whittaker, V. P.1, Author           
Affiliations:
1Abteilung Neurochemie, MPI for biophysical chemistry, Max Planck Society, ou_578555              
2Abteilung Neurobiologie, MPI for biophysical chemistry, Max Planck Society, ou_578620              

Content

show
hide
Free keywords: -
 Abstract: An antiserum raised to Torpedo electromotor synaptosomal membranes (anti-TSM antiserum) induces a cho-linergic-specific immune lysis of mammalian brain synap-tosomes and recognizes a group of minor gangliosides in mammalian brain. These minor gangliosides appeared, therefore, to be specific to the cholinergic neuron and were designated Chol-1. To confirm the cholinergic specificity of the Chol-1 gangliosidic antigens, we have shown that not only does a mammalian ganglioside fraction that is enriched with respect to the Chol-1 gangliosides inhibit the cholinergic-specific immune lysis induced by the anti-TSM antiserum, but also it can be used to affinity-purify a subpopulation of immunoglobulins from the anti-TSM antiserum that also induce a cholinergic-specific lysis. Furthermore, we have demonstrated that fimbrial lesions, which cause a massive degeneration of cholinergic terminals in the ipsilateral hippocampus, lead to a loss of the Chol-1 gangliosides concomitant with that shown by choline acetyl transferase activity and that lesions to the entorhinal cortex, which cause a loss of mainly glutamergic synapses in the ipsilateral dentate gyrus leading to cholinergic sprouting from adjacent hippocampal areas and an increase in cholinergic markers in the dentate gyrus, produce concomitant increases in choline acetyltransferase activity and Chol-1 content. These results provide strong evidence in favour of the cholinergic specificity of the Chol-1 gangliosides

Details

show
hide
Language(s): eng - English
 Dates: 1989-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Neurochemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 53 (6) Sequence Number: - Start / End Page: 1686 - 1692 Identifier: -