English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M. =. Ti, Zr, Hf)

Zhou, L., Shao, B., Shi, W., Sun, Y., Felser, C., Yan, B., et al. (2016). Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M. =. Ti, Zr, Hf). 2D Materials, 3(3): 035022, pp. 1-9. doi:10.1088/2053-1583/3/3/035022.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zhou, Liujiang1, Author           
Shao, Bin2, Author
Shi, Wujun1, Author           
Sun, Yan1, Author           
Felser, C.3, Author           
Yan, Binghai4, Author           
Frauenheim, Thomas2, Author
Affiliations:
1Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
2External Organizations, ou_persistent22              
3Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              
4Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863427              

Content

show
hide
Free keywords: -
 Abstract: We report the existence of the quantum spin Hall effect (QSHE) in monolayers of transition-metal carbides MC(M. =. Zr, Hf). Under ambient conditions, the ZrC monolayer exhibits QSHE with an energy gap of 54 meV, in which topological helical edge states exist. Enhanced d(xy)-d(xy) interaction induces band inversion, resulting in nontrivial topological features. By applying in-plane strain, the HfC monolayer can be tuned from a trivial insulator to a quantum spin Hall insulator with an energy gap of 170 meV, three times that of the ZrC monolayer. The strong stability of MC monolayers provides a new platform for QSHE and spintronic applications.

Details

show
hide
Language(s): eng - English
 Dates: 2016-09-132016-09-13
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: 2D Materials
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 3 (3) Sequence Number: 035022 Start / End Page: 1 - 9 Identifier: ISSN: 2053-1583