Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Formation of novel chromatin domains determines pathogenicity of genomic duplications

Franke, M., Ibrahim, D., Andrey, G., Schwarzer, W., Heinrich, V., Schöpflin, R., et al. (2016). Formation of novel chromatin domains determines pathogenicity of genomic duplications. Nature, 538(7624), 265-269. doi:10.1038/nature19800.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Franke.pdf (Verlagsversion), 8MB
Name:
Franke.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2016 Macmillan Publishers Limited, part of Springer Nature
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Franke, Martin, Autor
Ibrahim, Daniel1, Autor           
Andrey, Guillaume , Autor
Schwarzer, Wibke1, Autor           
Heinrich, Verena, Autor
Schöpflin, Robert2, Autor           
Kraft, Katerina1, Autor           
Kempfer, Rieke, Autor
Jerković, Ivana , Autor
Chan, Wing-Lee, Autor
Spielmann, Malte1, Autor           
Timmermann, Bernd3, Autor           
Wittler, Lars4, Autor           
Kurth, Ingo, Autor
Cambiaso, Paola , Autor
Zuffardi, Orsetta , Autor
Houge, Gunnar, Autor
Lambie, Lindsay , Autor
Brancati, Francesco , Autor
Pombo, Ana, Autor
Vingron, Martin5, Autor           Spitz, Francois , AutorMundlos, Stefan1, Autor            mehr..
Affiliations:
1Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433557              
2Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433547              
3Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479670              
4Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433548              
5Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479639              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Gene regulation Gene duplication Chromatin structure Disease model Disease genetics
 Zusammenfassung: Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions1, 2. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes3, 4, 5. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans6, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-08-232016-10-052016-10-13
 Publikationsstatus: Erschienen
 Seiten: 5
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/nature19800
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 538 (7624) Artikelnummer: - Start- / Endseite: 265 - 269 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238