English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security

McDonald, B., & Stukenbrock, E. H. (2016). Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 371(1709). doi:10.1098/rstb.2016.0026.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
McDonald, B.A., Author
Stukenbrock, E. H.1, Author           
Affiliations:
1Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_2068284              

Content

show
hide
Free keywords: Agricultural ecosystems; Dynamic diversity; Fungal pathogens; Pathogen emergence; Pathogen evolution; Population genetics
 Abstract: Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.

Details

show
hide
Language(s): eng - English
 Dates: 2016-10-242016-12-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1098/rstb.2016.0026
BibTex Citekey: McDonald2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Royal Society
Pages: - Volume / Issue: 371 (1709) Sequence Number: - Start / End Page: - Identifier: ISSN: 0962-8436
CoNE: https://pure.mpg.de/cone/journals/resource/963017382021_1