English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Activity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice

Frey, M., Sprengel, R., & Nevian, T. (2009). Activity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice. The Journal of Neuroscience, 29(17), 5587-5596. doi:10.1523/JNEUROSCI.5314-08.2009.

Item is

Files

show Files
hide Files
:
JNeurosci_29_2009_5587.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
JNeurosci_29_2009_5587.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Frey, Marco1, Author           
Sprengel, Rolf1, Author           
Nevian, Thomas2, Author           
Affiliations:
1Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497704              
2Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              

Content

show
hide
Free keywords: -
 Abstract: The AMPA receptor subunit GluA1 (GluR-A) has been implicated to be critically involved in the expression of long-term potentiation (LTP) and memory formation. Mice lacking this subunit possess a profound spatial working memory deficit. We investigated the influence of the GluA1 subunit on the expression of LTP in pyramidal neurons of the hippocampus CA1 region and somatosensory cortex layer 2/3 for different cellular LTP protocols in adult mice. We found that the GluA1 subunit was not required for LTP in cortical pyramidal neurons. In contrast, GluA1-dependent LTP expression in CA1 pyramidal neurons was differentially dependent on the LTP induction parameters. Depolarization pairing was exclusively, theta-burst pairing was partially, and spike-timing-dependent plasticity (STDP) was independent of the GluA1 subunit. Spike-timing-dependent LTP required postsynaptic membrane fusion in CA1 pyramidal neurons. We conclude that during LTP induction at the hippocampal CA3-to-CA1 synapse the recruitment of the GluA1 subunit is controlled by particular electrical activity patterns that might reflect specific behavioral states. Furthermore, other LTP expression mechanisms exist that do not require the presence of GluA1. The previously reported spatial working memory deficits in GluA1-lacking mice (Gria1(-/-) mice) together with these results suggest that STDP might be a likely basis for the formation of spatial reference memory whereas it is not required for the rapid formation of spatial working memory where a fast but transient increase of synaptic efficacy might be needed.

Details

show
hide
Language(s): eng - English
 Dates: 2009-03-112008-11-052009-03-312009-04-29
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Neuroscience
  Other : The Journal of Neuroscience: the Official Journal of the Society for Neuroscience
  Abbreviation : J. Neurosci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : Society of Neuroscience
Pages: - Volume / Issue: 29 (17) Sequence Number: - Start / End Page: 5587 - 5596 Identifier: ISSN: 0270-6474
CoNE: https://pure.mpg.de/cone/journals/resource/954925502187_1