English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems

Korabel, N., & Klages, R. (2002). Fractal structures of normal and anomalous diffusion in nonlinear nonhyperbolic dynamical systems. PHYSICAL REVIEW LETTERS, 89(21): 214102. doi:10.1103/PhysRevLett.89.214102.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Korabel, N1, Author
Klages, R1, Author
Affiliations:
1external, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: A paradigmatic nonhyperbolic dynamical system exhibiting deterministic diffusion is the smooth nonlinear climbing sine map. We find that this map generates fractal hierarchies of normal and anomalous diffusive regions as functions of the control parameter. The measure of these self-similar sets is positive, parameter dependent, and in case of normal diffusion it shows a fractal diffusion coefficient. By using a Green-Kubo formula we link these fractal structures to the nonlinear microscopic dynamics in terms of fractal Takagi-like functions.

Details

show
hide
Language(s):
 Dates: 2002
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1103/PhysRevLett.89.214102
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PHYSICAL REVIEW LETTERS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 89 (21) Sequence Number: 214102 Start / End Page: - Identifier: -