English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

Marsh, D. (2016). Nuclear spin-lattice relaxation in nitroxide spin-label EPR. Journal of Magnetic Resonance, 272, 166-171. doi:10.1016/j.jmr.2016.07.019.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-1165-A Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-1175-6
Genre: Journal Article

Files

show Files
hide Files
:
2367733.pdf (Publisher version), 514KB
 
File Permalink:
-
Name:
2367733.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), Göttingen; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Marsh, D.1, Author              
Affiliations:
1Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society, ou_578571              

Content

show
hide
Free keywords: Saturation recovery; ELDOR; Electron-nuclear dipolar (END); N-15-, N-14-nitroxides
 Abstract: Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T-1-exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W-n commonly used in the CW-EPR literature for N-14-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised N-14 spin-lattice relaxation rate, b = W-n/(2W(e)), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for N-14-relaxation: T-1n =1/W-n. Results are compared and contrasted with those for the two-level N-15-nitroxide system.

Details

show
hide
Language(s): eng - English
 Dates: 2016-10-032016-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1016/j.jmr.2016.07.019
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Magnetic Resonance
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 272 Sequence Number: - Start / End Page: 166 - 171 Identifier: -