日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Microconstriction Arrays for High-Throughput Quantitative Measurements of Cell Mechanical Properties

Lange, J. R., Steinwachs, J., Kolb, T., Lautscham, L. A., Harder, I., Whyte, G., & Fabry, B. (2015). Microconstriction Arrays for High-Throughput Quantitative Measurements of Cell Mechanical Properties. BIOPHYSICAL JOURNAL, 109(1), 26-34. doi:10.1016/j.bpj.2015.05.029.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Lange, Janina R.1, 著者
Steinwachs, Julian1, 著者
Kolb, Thorsten1, 著者
Lautscham, Lena A.1, 著者
Harder, Irina2, 著者           
Whyte, Graeme3, 著者           
Fabry, Ben1, 著者
所属:
1external, ou_persistent22              
2Optical Design and Microoptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364704              
3Russell Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364721              

内容説明

表示:
非表示:
キーワード: ATOMIC-FORCE MICROSCOPY; SMOOTH-MUSCLE-CELLS; LIVING CELLS; CANCER-CELLS; CHROMATIN DECONDENSATION; DEFORMABILITY; CYTOSKELETON; DYNAMICS; RHEOLOGY; MICROFLUIDICSBiophysics;
 要旨: We describe a method for quantifying the mechanical properties of cells in suspension with a microfluidic device consisting of a parallel array of micron-sized constrictions. Using a high-speed charge-coupled device camera, we measure the flow speed, cell deformation, and entry time into the constrictions of several hundred cells per minute during their passage through the device. From the flow speed and the occupation state of the microconstriction array with cells, the driving pressure across each constriction is continuously computed. Cell entry times into microconstrictions decrease with increased driving pressure and decreased cell size according to a power law. From this power-law relationship, the cell elasticity and fluidity can be estimated. When cells are treated with drugs that depolymerize or stabilize the cytoskeleton or the nucleus, elasticity and fluidity data from all treatments collapse onto a master curve. Power-law rheology and collapse onto a master curve are predicted by the theory of soft glassy materials and have been previously shown to describe the mechanical behavior of cells adhering to a substrate. Our finding that this theory also applies to cells in suspension provides the foundation for a quantitative high-throughput measurement of cell mechanical properties with microfluidic devices.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2015
 出版の状態: 出版
 ページ: 9
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 000357670700005
DOI: 10.1016/j.bpj.2015.05.029
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: BIOPHYSICAL JOURNAL
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA : CELL PRESS
ページ: - 巻号: 109 (1) 通巻号: - 開始・終了ページ: 26 - 34 識別子(ISBN, ISSN, DOIなど): ISSN: 0006-3495